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Preface 

This document comprises the National Oceanic and Atmospheric Administration (NOAA) National 

Environmental Satellite, Data, and Information Service (NESDIS), Office of Satellite and Product 

Operations (OSPO), publication of this VIIRS Leaf Area Index (LAI) Algorithm Theoretical Basis 

Document. This document reflects current operations for the DOC/NOAA/NESDIS Environmental 

Satellite Processing Center (ESPC) (NOAA5045) information technology systems. This document 

describes the established ESPC procedure for LAI users in accordance with Federal, DOC, NOAA, 

NESDIS and OSPO requirements.  

The published version of this document can be found at the OSPO SharePoint Products Library. 
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  INTRODUCTION  

This document outlines the scientific foundation, design, and expected performance of 
the Leaf Area Index (LAI) algorithm for the in-operation Suomi National Polar-orbiting 
Partnership (S-NPP), NOAA-20, NOAA-21 and the future satellites in Joint Polar Satellite 
System (JPSS).  
 
It includes a concise overview of the product's background, requirements, and the 
associated satellite instrument in the introductory section. The second section provides a 
comprehensive overview of the LAI algorithm, including its operational processing flow. 
This section details the theoretical framework and processing methods, input and output 
data for the algorithm, as well as plans for evaluation, validation, and anticipated 
performance. Section 3 delves into the assumptions and limitations inherent to the 
algorithm, also discussing potential enhancements. The final section enumerates the 
references utilized. 

  Product Overview 

1.1.1 Product Description 

LAI is defined as one half the total green leaf area per unit horizontal ground surface area. 
It is an essential climate variable driving water and carbon fluxes, and energy exchanges, 
playing an important role in the models of the climate, hydrology, ecology, et.al. As a 
fundamental attribute of vegetation, LAI has been listed as an essential climate variable 
by the global climate change research community (GCOS, 2011). 
 
As the operational land surface model (LSM) in the Global Forecast System (GFS), the 
Noah LSM takes the green vegetation fraction (GVF) as input for the vegetation dynamic 
characterization while LAI simply used some constant value for each biome; however, in 
the next generation LSM, Noah with multi-parameterization (Noah-MP), LAI becomes a 
key vegetation parameter, and high-quality satellite LAI product has been proved with a 
significant impact on Noah-MP performance, in this context, a new JPSS LAI operational 
product is under development to support the LSM and other earth science research and 
applications. 
 
This document was prepared by the Center for Satellite Applications and Research 
(STAR) Land Product Development team led by Dr. Yunyue Yu and in consultation with 
primary data users, e.g. NOAA Environmental Modeling Center. The responsible entity 
for bookkeeping, accessibility and distribution of this document is the Operational 
Products Development Branch (OPDB) of the NESDIS STAR Satellite Meteorology and 
Climatology Division (SMCD). The intended users of this document are project managers, 
product users, requirement reviewers and code reviewers.  
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1.1.2 Product Requirements 

Product requirements initially proposed by the land surface model users and Table 1 
provides the LAI product requirements for the JPSS mission.  

Table 1 - JPSS LAI Product Requirements 

Attribute Threshold Objective 

Geographic coverage Clear sky condition, land surface All weather condition, land surface 

Vertical Coverage NA NA 

Refresh rate 8-day Daily rolling 8-day 

Horizontal Cell Size 1 km 500 m 

Mapping Uncertainty 1 km 500 m 

Measurement Range 0-10 0-10 

Accuracy 15% 10% 

Precision 18% 13% 

Uncertainty* 20% 15% 

 
*According to the world meteorological organization (WMO, https://gcos.wmo.int/), the uncertainty 
requirement for global numerical weather prediction (NWP) and High-Resolution NWP application, the 
threshold is 20%, breakthrough is 10%, goal is 5%. 
According to GCOS-200 (Plan 2016), required measurement uncertainty is: maximum (15%). 

  Satellite Instrument Description 

The LAI algorithm primarily uses the data from the VIIRS (Visible Infrared Imaging 
Radiometer Suite) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) 
platform and on subsequent satellites of the Joint Polar Satellite System (JPSS).  
  
S-NPP was launched on October 28, 2011, while NOAA-20 and NOAA-21 were launched 
on November 18, 2017, and November 10, 2022, respectively. These satellites are in a 
sun-synchronous orbit with a 1:30 pm ascending-node orbit, spaced half an orbit apart, 
at altitudes of approximately 830 km. VIIRS will also be flown on the JPSS-3 and -4 
satellites in the future. 
 
The VIIRS instrument aboard these satellites is a whiskbroom scanning radiometer. It 
features a swath width of 3060 km, enabling full daily coverage of the Earth's surface on 
both the day and night sides. VIIRS is equipped with 22 spectral bands that span the 
spectrum from 0.41 µm to 12.5 µm. This range includes 16 moderate-resolution bands 
(M-bands) with a spatial resolution of 750 m at nadir, 5 imaging-resolution bands (I-bands) 
with a spatial resolution of 375 m at nadir, and one panchromatic Day/Night Band (DNB) 
with a 750 m spatial resolution throughout the scan. The surface reflective bands 
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information could be found in Table 2, in LAI retrieval, only the image bands (I1, I2 and 
I3) are used to generate LAI with original spatial resolution of 500 m.  
 
The Level-1b Sensor Data Records (SDR) from VIIRS are the calibrated and 
geolocated radiance and reflectance data produced from the Raw Data Records. The 
geolocation data will be used in this product. Based on the SDR, many Level-2 
Environmental Data Records (EDR) are generated, the surface reflectance EDR is the 
primary input for the LAI product, and the annual surface type EDR will be used for the 
static biome type derivation. 

Table 2 - VIIRS Surface Reflective bands and configurations 

VIIRS Band wavelength 
(µm) 

Bandwidth (µm) SNR* Spatial resolution (m) 

M1 0.412 0.402-0.422 352/316 

750m 

M2 0.445 0.436-0.454 380/409 

M3 0.488 0.478-0.488 416/414 

M4 0.555 0.545-0.565 362/315 

M5 0.672 0.662-0.682 242/360 

M7 0.865 0.846 - 0.885 215/340 

M8 1.240 1.23 - 1.25 74 

M10 1.61 1.58 - 1.64 83 

M11 2.25 2.23 - 2.28 10 

I1 0.64 0.6 - 0.68 119 

375m I2 0.865 0.85 - 0.88 150 

I3 1.61 1.58 - 1.64 6 

 
*M1, M2, M3, M5 and M7 are dual gain with high gain value followed by the low gain Signal-to-noise ratio 
(SNR), the rest bands are single gain. SNR data are for SNPP and should be slight difference for NOAA-
20 and NOAA-21. 

 
 ALGORITHM DESCRIPTION 

  Processing Outline 

Satellite LAI datasets, recorded over the past two decades, have been utilized extensively 
across various applications. Leveraging the legacy of established satellite products like 
the Moderate Resolution Imaging Spectroradiometer (MODIS), Global Land Surface 
Satellite (GLASS), and Geoland2/BioPar (GEOV2) LAI products, a data-driven 
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methodology has been developed to obtain near-real-time LAI from VIIRS observations. 
Prior to implementation, a machine learning algorithm is tuned and trained based on a 
comprehensive suite of representative datasets. 
 
The VIIRS LAI product is designed to be a temporally smoothed, global, gap-free dataset. 
The operational procedure is segmented into three phases, as depicted in Figure 1: 
 
(1) Daily Surface Reflectance Generation: Utilizing the VIIRS gridding tool, granule data 
is mapped onto a global grid in a sinusoidal projection. The surface reflectance (SR) 
compositing process then identifies and selects the highest quality SR and corresponding 
angles for each grid cell. 
 
(2) Daily LAI Retrieval: A previously trained machine learning algorithm performs the 
clear-sky LAI retrieval, leveraging the daily SR together with auxiliary data. 
 
The first two steps are daily processing, with up to 8 days’ data being sustained for the 
weekly processing, which will be run every 8 days.  
 
(3) 8-Day LAI Compositing and Post-Processing: From the daily LAI outputs, the optimal 
quality LAI is chosen for each 8-day interval. Subsequently, a temporal smoothing and 
gap-filling (TSGF) procedure is applied to produce the final, gap-free product. 
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Figure 1 - Leaf Area Index processing architecture 

  Theoretical Description 

2.2.1 Introduction 

Supervised machine learning algorithms represent a data-driven approach that is 
increasingly being applied in the retrieval of the land or atmospheric parameters from 
satellite imagery. The performance of these algorithms highly depends on the quality 
(both the accuracy and representativeness) of the training datasets. Over the years, 
several LAI products have been developed, offering a substantial advantage for the 
machine learning algorithms. Nonetheless, these products exhibit significant variations in 
both spatial distribution and temporal series, with each product having its shortcomings. 
And the limited ground measurements further restrict the use of a single product in 
applications. Exploring the best LAI estimation from multiple products and developing a 
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data-driven algorithm trained on fused high-quality LAI data and VIIRS surface 
reflectance emerges as a promising strategy to produce near-real-time VIIRS products.   

2.2.2 Machine learning algorithms 

To select an effective machine learning algorithm for VIIRS LAI retrieval, a 
comprehensive collection of relevant datasets has been prepared for training purposes. 
Given that LAI is intended to be an operational product where both efficiency and 
accuracy are important, the evaluation of the models and coefficients will carefully 
balance the trade-off between uncertainty and operational efficiency. 
 
Tree-based algorithms have proven exceptionally adept at extracting land surface 
parameters from remote sensing data. Among these, the Random Forest algorithm 
stands out for its computational efficiency, making it particularly suitable for processing 
the extensive datasets generated by global observations. This efficiency, coupled with its 
effectiveness, positions the Random Forest algorithm as the recommended choice for 
estimating the VIIRS LAI. 
 
The Random Forest model, a supervised learning algorithm, employs ensemble learning 
for both classification and regression tasks. It builds numerous decision trees during 
training and averages their predictions to yield robust outcomes. Each tree in the 
ensemble is constructed from a unique, randomly selected subsample of the training set 
and utilizes a random subset of input features. This inherent randomness not only 
mitigates overfitting, thus enhancing generalization, but also bolsters the model's 
resilience against noisy data. 
 
Training datasets for LAI Estimation Using Machine Learning 
 
(1) NASA MODIS/VIIRS LAI: Derived from daily MODIS red and near-infrared (NIR) 
surface reflectance via biome-specific Look-Up Tables (LUTs) from a three-dimensional 
radiative transfer model. A backup NDVI empirical method is used if the main algorithm 
fails. Despite quality control and temporal compositing for an 8-day, 500m resolution LAI 
product, some cloud-contaminated pixels remain, leading to outliers and fluctuations over 
time. 
 
(2) Copernicus Global Land Service GEO v2 LAI: This enhanced version employs an 
Artificial Neural Network (ANN) trained on PROBA-V red, NIR, and Short-Wave Infrared 
(SWIR, 1.6um) surface reflectance. The training integrates a weighted average of 
CYCLOPES (V3.1) and MODIS LAI (Collection 5) data. The product undergoes filtering, 
temporal compositing, and gap filling for a gap-free, smoothed time series.  
To be noted, the GEOv2 training LAI taking MODIS LAI for dense vegetation (LAI > 4), 
the weighting decreases progressively for LAI values below 4, when CYCLOPES LAI is 
estimated from model training data generated by SAIL model. GEOv2 LAI is produced as 
a decadal product (10 days) at 1/112 degree, which is different from the proposed spatial 
and temporal resolution, so a linear interpolation method is used to convert to 8-day 
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refresh rate data, and a nearest neighbor method is used to convert the spatial resolution 
to 500m sinusoidal grid. 
 
(3) GLASS LAI (Version 6): Different from MODIS and GEO v2, which utilize daily data 
for LAI derivation, GLASS LAI employs a deep learning approach using a Bidirectional 
Long Short-Term Memory (BiLSTM) network using long-term MODIS surface reflectance 
data as input. The training model incorporates a fused LAI time-series from MODIS, GEO 
v1, and GLASS LAI (version 5). As a result, the final GLASS LAI products are provided 
gap-free at both 250m and 500m resolutions. Due to the smoothing process applied to 
the trained LAI data, the output LAI is also expected to exhibit a smoothed quality. 
 
To be noted, the expected LAI product is the true LAI as the physical definition described, 
however, some LAI product base on gap fraction theory is with the concept of effective 
LAI, such as CYCLOPES used in GEOv2 and GLASS v5, which need adjustment using 
clumping index to match the true LAI such as MODIS. Therefore, all these three LAI 
datasets are defined as true LAI and ensure this VIIRS LAI is true value. The retrieved 
LAI from optical remote sensing observations is mainly corresponding to the green 
element: the correct term to be used would be GAI (Green Area Index) although we 
propose to still use LAI for the sake of simplicity. 
 
The primary estimator for predicting LAI is the VIIRS surface reflectance measurements. 
For LAI estimation, not only the traditional red (VIIRS I1) and near-infrared (VIIRS I2) 
bands are utilized, but the SWIR band (VIIRS I3) is also incorporated. The SWIR band 
located at 1.6um (as Figure 2 shows) is known for its sensitivity to leaf water content, 
which many researchers have found beneficial for LAI derivation. Given that reflectance 
characteristics are highly anisotropic, and LAI is inherently a structural parameter, both 
solar and viewing angles are included for the Bidirectional Reflectance Distribution 
Function (BRDF) adjustment process. Supported by a feature importance evaluation, the 
vegetation indices like the NDVI and the NDWI (Normalized Difference Water Index) are 
integrated into the model as well to enhance performance, owing to their proven strong 
correlations with LAI. 
 
LAI is strongly nonlinearly related to the reflectance, with the relationship being dependent 
on biome type. Different biomes exhibit unique vertical structures, soil types, and 
clumping indices, making the prior information on biome types crucial for generating a 
global LAI product. After conducting a clustering analysis, 6 biome types are proposed in 
the algorithm to train the model separately, and the biome data will be used in daily 
retrieval to determine the model for each type. The details about the biome data will be 
introduced in 2.2.3. 
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Figure 2 - VIIRS spectral response (I1, I2 and I3) and typical vegetation reflectance 

For the model training, a set of globally distributed datasets spanning 2 years were used 
to encompass at least two growing seasons. This was done to ensure the collection of 
sufficient data that is both robust and representative. In addition to utilizing data from the 
445 Benchmark Land Multisite Analysis and Intercomparison of Products (BELMAINIP 
version 2) sites, a global sampling method was employed to select training data from 
across the world. Selection criteria included ensuring the pixel was in a land area 
(excluding coastal or permanently snow-covered areas), that the surrounding biome type 
and LAI value were homogeneous, and that the distribution was uniform across the global 
area. 
 
To enhance the efficiency of the training data, several processes were implemented: 
 
(1) Data Screening: The quality of the training data is crucial for model performance. 
Several screening methods were applied, including the use of quality flags with LAI and 
SR (Surface Reflectance) data. For MODIS LAI data, only data derived from the main 
algorithm under clear sky conditions were used. Both unsaturated and potentially 
saturated LAI data were utilized. GEOv2 and GLASS data, being postprocessed, were 
screened to select the most valid data for fusion. Similarly, VIIRS SR data were selected 
based on quality flags to ensure reliability. The LAI data fusion method was also used to 
enhance data quality by comparing three different products. For SR data, the NDVI-LAI 
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relationship was used to exclude potential outliers by screening out pixels with NDVI 
values that were too high or too low for the given LAI. 
 
(2) Biome Type Representation: Given the sensitivity of LAI retrieval to biome type, a 
biome type screening process was also conducted. For each biome, a Red-NIR scattering 
plot (as Figure 3 shows) was used to define a convex hull (polygon) that encompassed 
97% of the data points, with the remaining points deemed less representative of the 
biome. During LAI retrieval, input data were tested to ascertain whether they fell within 
the biome's polygon, with the results recorded in the quality flag for diagnostic purposes. 
 

 

Figure 3 - Red/NIR SR scattering plot and the convex hull 

 (3) Sample Balancing: After screening, a process of balancing was applied to the high-
quality training data to minimize redundancy and enhance representation. Initially, a 
clustering experiment using the K-means clustering analysis (without supervision) was 
conducted to reduce data considered duplicated, resulting in over 10,000 clusters. 
Subsequently, the distribution of biome type, day of the year, LAI value, and locations 
were adjusted to match a global average distribution. It is noted that areas with high LAI 
are more affected by the atmosphere than those with low LAI; therefore, retaining more 
high LAI training data helps to prevent overfitting issues. 
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We conducted a thorough evaluation of various machine learning algorithms, including 
Cubist, Random Forest, Gaussian Process Regression, and Artificial Neural Networks 
(ANN). This assessment involved a rigorous comparison of each model's performance in 
terms of accuracy, consistency, and computational efficiency. And Random Forest 
emerged as the most suitable algorithm for our purposes. The test indicated its 
robustness in capturing the complex nonlinear relationships inherent in environmental 
data, combining the predictions from multiple decision trees to improve the overall 
prediction accuracy, despite the algorithm's complexity, it can run relatively quickly, 
making it feasible for large-scale applications and operational use. 
 
Tuning is the task of finding optimal hyperparameters for a learning algorithm for a 
considered dataset. In the exploratory analysis, we evaluated the influence of 
hyperparameters on model performance through 10-fold cross-validation procedures. 
The Random Forest algorithm consists of multiple decision trees, key variables tested 
were the number of trees in the forest (ntree), the number of features (mtry) considered 
for splitting at each node within the trees, and the minimum size of the terminal nodes 
(leaves) of the trees. Increasing the number of trees generally improves model 
performance up to a certain point but results in longer training time. And a larger mtry can 
decrease bias but increase variance, A smaller node size allows for catching more details 
at the risk of overfitting. So, it's important to find a balance when tuning the parameters. 

 

 

Figure 4 - Random Forest model performance for each biome type 
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The random forest models were developed to estimate the LAI for six biome types, 
utilizing two years of global data. The model's parameters were optimized and saved 
specifically for VIIRS LAI estimation. Validation with independent datasets indicates 
strong model performance, as illustrated in Figure 4. Notably, forests—particularly 
evergreen broadleaf forests—exhibited considerable uncertainty due to their complex 
vertical structure. In these rainforests, the LAI can exceed 5, and the visible/near-infrared 
bands are prone to saturation. Compared to shrublands and grasslands, savannahs also 
displayed greater uncertainty, underscoring the model's varied accuracy across different 
biomes 

2.2.3 Data preparation 

LAI retrieval is performed based on the daily global gridded surface reflectance, 
incorporating two key subroutines: mapping VIIRS granule data onto a fixed grid of a 
specific projection and compositing the SR values within each grid cell. The mapping 
process utilizes an independent gridding tool, which has been operationally applied to 
Land Surface Temperature and Albedo Level 3 products. This gridding tool is designed 
to transform VIIRS granule data into stacked layers within predefined tiles. The global 
grid comprises 72 by 72 tiles, with each tile representing a 5 by 2.5-degree area. The tool 
takes latitude and longitude as inputs and forwards maps the granule pixels to a 
sinusoidal grid at 500m resolution.  
 
To address the bow-tie effect at the swath edges, a gap-filling approach is employed, 
ensuring accurate mapping. The gridding tool, designed as a generic solution, maintains 
detailed indices for tile-to-granule and granule-to-tile mappings. These indices facilitate 
the precise mapping of granule SR (I1, I2 and I3 band) data along with the solar/satellite 
zenith angles, azimuth angles to the tile grid prior to the compositing process. For detailed 
methodology of the gridding process, please refer to the Algorithm Theoretical Basis 
Document For Gridded VIIRS Land Surface Temperature and Albedo Production 
(https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_Gridded_VIIRS_LST_L
SA_v1.pdf) 
 
For the daily SR compositing, when multiple observations exist within some grid cells, a 
selection priority criterion is applied to choose the best quality data. The quality 
assessment involves a test scoring range from 0 to 10 (see Table 3). The surface 
reflectance will go through the test 0 to 10, when failing in the test the data receives the 
score of the test index, and the pixel with the highest score is selected for the daily SR 
compositing, if the candidates share the same score, the one with lower VZA is preferred. 
This ensures that the composited SR data represents the highest quality observation 
available for each grid cell.  
 
Daily gridded SR serves as an intermediate dataset, and will be used to do the daily LAI 
retrieval. For computing efficiency, the output of daily SR saves in accordance with 
MODIS Sinusoidal Tile Grid at 500m resolution, there are around 315 tiles with land 
surface data are stored, each tile (2400*2400 grids) is 10 degrees by 10 degrees at the 

https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_Gridded_VIIRS_LST_LSA_v1.pdf
https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_Gridded_VIIRS_LST_LSA_v1.pdf
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equator. In addition to three VIIRS Image Band SR and four solar and view angles, two 
8-bit quality flags are recorded as reference for the further processing. This includes the 
cloud mask, high AOD flag, cloud shadow mask flag et, al. 
 
For the LAI retrieval, some auxiliary static data are needed, one is the biome type, which 
are derived from multiple years of VIIRS annual surface type (AST), which utilizes the 17-
class scheme developed by the International Geosphere Biosphere Program (IGBP). 
However, the IGBP classification does not directly meet the requirements for LAI retrieval. 
After conducting a clustering analysis, IGBP types that show similar performance in LAI 
retrieval are merged into new categories. The Evergreen Broadleaf Forest category is 
kept as is due to its distinct characteristics, while all low-height, uniformly distributed 
vegetation types are consolidated into a single category. In utilizing VIIRS AST data, a 
climatology is generated from all available data. Subsequently, the new biome type data 
is reassigned according to the plan outlined in Table 4. And the regrouped biome map as 
shown in Figure 5. 

Table 3 - SR compositing selection priority 

0 Filled value or out of range [0,1] 

1 I1, I2 and I3 SDR QF at least one is marked bad 

2 Large View Zenith Angle (>=60) 

3 Large Solar Zenith Angle (>=85) 

4 Confidently Cloudy 

5 Probably Cloudy 

6 Probably Clear 

7 Cloud shadow 

8 High AOD quantity 

9 Not AOD climatology 

10 No Snow Present 

 
Since the biome class used in the Noah-MP model are different from the one proposed 
in this document, evaluation will be conducted to determine if the consistent biome 
classes are needed in the future. 

Table 4 - New biome type conversion scheme from IGBP classes 

New Biome types IGBP classes 

Needleleaf Forests IGBP = 1. Evergreen Needleleaf Forests 
IGBP = 3. Deciduous Needleleaf Forests 

Deciduous Broadleaf Forest IGBP = 4. Deciduous Broadleaf Forests. 
IGBP = 5. Mixed Forests 

Evergreen Broadleaf Forest IGBP = 2. Evergreen Broadleaf Forests 
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shrubland IGBP = 6. Closed Shrublands. 
IGBP = 7. Open Shrublands 

Savannah IGBP = 8. Woody Savannas. 
IGBP = 9. Savannas 

Grassland cropland & others IGBP = 10. Grasslands. 
IGBP = 11. Permanent Wetlands 
IGBP = 12. Croplands. 
IGBP = 13. Urban and Built-Up Lands 
IGBP = 14. Cropland/Natural Vegetation Mosaics. 
IGBP = 15. Snow and Ice 
IGBP = 16. Barren. 
IGBP = 17. Water; 

 
Another static auxiliary data is the land water mask, which is used to identify all the land 
grids, excluding all the non-land grids and filling all the gap in the land. The mask is based 
on the NASA DEM datasets derived from the Shuttle Radar Topography Mission (SRTM) 
with 15 arc-second resolutions. The ocean coastlines and lake shorelines along with the 
land are marked as land, all else as water. 
 
The last but very important auxiliary data is the LAI climatology, which is used for temporal 
smoothness and gap filling. Before the VIIRS LAI dataset was sufficiently populated for 
climatology purposes, the GLASS LAI dataset from the latest 10 years (2012-2021) was 
utilized, offering a resolution of 500m and an 8-day refresh rate to create an LAI 
climatology. To ensure each land grid contained valid LAI data, a comprehensive gap-
filling process was implemented. Initially, gaps were filled using valid data from the same 
biome and latitude within the tile (10° by 10°). If no data were available within this range, 
the search expanded globally to any location at the same latitude. 
 
Both the land water mask and LAI climatology are saved in the same MODIS sinusoidal 
tiles, ensuring that the consistent subsets and computing efficiency. 
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Figure 5 - The global biome type map used in LAI retrieval 

2.2.4 LAI retrieval and compositing 

The Daily LAI retrieval is the most fundamental process of the product, it directly gets the 
LAI information from the SR observation, all the post processing is based on this data. 
 
The daily LAI is derived using the pre-trained random forest models, the quality flag will 
be used to determine the valid data for retrieval, while the rest of the grids will be assigned 
with fill values. The biome type and land water mask are used as auxiliary data to select 
the biome model and filter the water surface. The LAI physical valid range is defined as 
0 to 7, all the grid with out-of-range data will be marked as the invalid retrieval. 
 
The consistency between training dataset input and operational input data is critical to the 
algorithm performance, to identify if the input surface reflectance behaves its general 
biome characteristics, a convex hull check is performed using the predefined polygons 
for each biome, this check results will be recorded for further reference. 
 

LAI is a vegetation attribute that undergoes gradual and continuous changes over time, 
a short period of time compositing will significantly improve the data quality. The weekly 
compositing is to generate 8-day period LAI, which will select the best quality data as the 
weekly value, in most case the contaminated observation will lead to a lower vegetation 
metrics (i.e. VI, FPAR, LAI), here, the highest LAI within a certain composting 8-day 
window will be selected as the weekly value. Figure 6 illustrates the process flow of the 
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weekly LAI. The Quality flag of the weekly LAI will be a replication from the corresponding 
daily LAI. 
 

 

Figure 6 - LAI weekly processes based on the daily retrieval 

For this version, the refresh rate will be 8 days, to keep the product date consistent over 
years, the first composing window of year will always start from January 1st, and the last 
compositing window (46th) from day of the year 361 will need the first three or two (for 
the leap year) days of next year to complete an 8-day window. In the future version, 
depending on the user request, a daily rolling weekly compositing scheme might be 
applied to improve the refresh rate. 

2.2.5 Temporal smoothing and gap filling. 

The weekly compositing will significantly reduce the uncertainty of the daily retrieved LAI, 
however, the data missing, and outliers are still possible in some situations like cloud, 
aerosol contamination, darkness or BRDF effect impact. A smoothed vegetation time 
series is intrinsic feature of the nature, which could be used as an constrain to further 
improve the satellite derived product, and for the model application, a gap-free product is 
required, so compositing and temporal smoothing and gap filling (TSGF) will be 
performed. 
 
For the temporal smoothing process, up to 15 weekly (8-day interval) LAI values will be 
utilized. Initially, any missing LAI values are replaced by linear interpolation using 
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adjacent points. Following this, a Savitzky-Golay filter with a window size of 3 is applied 
to preliminarily smooth the data. Subsequently, an adapted Savitzky-Golay filter with a 
larger window size of 7 is employed for further smoothing. 
 
Given that LAI is produced as a near real-time product, the temporal series can only 
incorporate prior data, not post-event data, which poses a significant challenge to the 
process. For instances lacking sufficient nearby data, climatology data is employed for 
reconstruction. The available data are utilized to calculate adjustment coefficients (scale 
factor and offset) in comparison with the climatology curve. Then, the targeted LAI is 
adjusted based on these climatology values. 
 
In certain scenarios where sufficient data for smoothing are not available (e.g., polar 
nights during winter, or consistently cloudy conditions in rainforests), climatology data is 
instead used to ensure data completeness. 

  Algorithm Input  

The input data sets used by the VIIRS LAI algorithm are listed in Tables 5 and 6. The 
dynamic input data are used in their original swath projection format which is (6400 * 1538 
pixels) for the image bands.  

Table 5 - List of dynamic input data sets used in the VIIRS LAI algorithm 

Input  Datasets 

VIIRS Imagery Band Geolocation 
Data 

● Latitude 
● Longitude 
● Satellite Azimuth Angle 
● Satellite Zenith Angle 
● Solar Azimuth Angle 
● Solar Zenith Angle 
● Quality Flag 

VIIRS Surface Reflectance EDR ● Channel I1 SR 
● Channel I2 SR 
● Channel I3 SR 
● Quality Flags 

 
The VIIRS surface reflectance is a granule file that contains top of canopy reflectance 
data in the twelve VIIRS spectral bands listed in Table 2.  The LAI algorithm uses the 
red (I1), NIR (I2) and SWIR (I3) reflectance data. Cloud, aerosol, snow and other quality 
flag information is included in the files. Details of VIIRS surface reflectance EDR are 
available at 
https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_SurfaceReflectance.pdf 
The seven bytes of quality flag information included in the VIIRS surface reflectance 
files are described in the VIIRS Surface Reflectance External User’s Manual (EUM) . 
 

https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_SurfaceReflectance.pdf
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The quality of Surface Reflectance (SR) is crucial for the accuracy of LAI retrieval. The 
VIIRS SR product is directly heritage from collection 5 MODIS and integrated the 
refinement of the latest Collection 6, currently, the product reach validated maturity stage, 
indicating that its performance has been thoroughly demonstrated across a broad and 
diverse range of representative conditions. Validation efforts at AERONET (Aerosol 
Robotic Network) sites reveal that bands I1, I2, and I3 exhibit high accuracy and precision 
(as illustrated in Figure 7), fulfilling the product requirements under clear sky conditions. 
However, there is still potential for improvement in handling challenging atmospheric 
conditions, which is a primary factor contributing to LAI outliers. 
 

 

Figure 7 - Surface Reflectance validation results at AERONET 

The VIIRS geolocation files (GITCO) include latitude, longitude and solar, view 
geometry information corresponding to the VIIRS Surface Reflectance. The LAI 
algorithm uses the latitude and longitude information in gridding and the solar and view 
geometry information in compositing and retrieval.  Further information about the VIIRS 
geolocation data is available at 
https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/D0001-M01-S01-
003_JPSS_ATBD_VIIRS-SDR_E.pdf 
 
In the previous section, we covered the preparation of static input data. All these global 
data are provided in NetCDF format for each tile at 500m resolution, biome type data and 
land water mask are combined in one file, while LAI climatology is provided as time series 
data with the same step of 8 days. The biome polygons are archived as six binary 
matrices measuring 101x101 with a reflectance step increment of 0.01, raster format is 
more effective for the point in polygon check. The model's coefficients are stored in the 
KPL format utilizing the Python scikit-learn module, which will also facilitate their loading 
during the retrieval process. To further streamline the reprojection process, pre-calculated 
projection indices are supplied, facilitating swift conversion from sinusoidal to equal 
latitude/longitude. 

Table 6 - List of static input used in the VIIRS LAI algorithm 

Input  Data Sets 

Trained models Model coefficients for 6 biome types 

Biome definition coefficients Polygon definition matrix 

LAI climatology LAI climatology with same spatial and temporal resolution 

https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/D0001-M01-S01-003_JPSS_ATBD_VIIRS-SDR_E.pdf
https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/D0001-M01-S01-003_JPSS_ATBD_VIIRS-SDR_E.pdf
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Biome type Biome type data used in model training 

Land water mask Land & water mask  

Projection indices Mapping indices for prompt projection conversion 

  Algorithm Output  

The LAI product is designed with a global scope, featuring a 1km resolution. Originally all 
the processes are based on a sinusoidal tile grid, the final LAI data undergoes reprojection 
to fit into a global, equal latitude/longitude grid. This step includes an aggregation 
process, converting the original 500m resolution to 1km across the globe. 
 
The datasets resulting from this process are detailed in Table 7. The finalized LAI data is 
offered as a global dataset with a spatial resolution of 0.009 degrees. This data is updated 
every 8 days, corresponding to a cycle of 46 periods per year, each period spanning 8 
days. 
 
Within the data processing workflow, both Daily and Weekly LAI datasets serve as 
intermediate stages. These datasets are preserved for subsequent analytical processes. 
Specifically, Daily LAI records are maintained for a duration of 8 days to facilitate the 
creation of weekly composite data Meanwhile, Weekly LAI datasets are retained for 15 
weeks to enable a temporal smoothing process, enhancing the accuracy and utility of the 
final product. 

Table 7 - VIIRS SR output science datasets 

Data Set Name Description Dimension 

Global LAI LAI final product [20000x40000] 

Daily LAI Intermediate data [2400x2400] for each tile 

Weekly LAI Intermediate data [2400x2400] for each tile 

 
The LAI valid value is from 0 to 7, adjusted by a scaling factor of 0.01 and an offset value 
of 0. Quality metrics are generated and retained for oversight purposes and to serve as 
a reference for users. Unlike direct outputs from the retrieval algorithm, the final LAI 
product undergoes temporal smoothing. This process involves adjustments based on 
time series data, rendering the original observation condition or quality flags inapplicable. 
Instead, a generalized retrieval number and an optimal retrieval percentage are computed 
for ongoing monitoring purposes. However, for the model application, the product 
uncertainty is critical to the data assimilation, the grid level uncertainty will be quantified 
in the future version. 
 
 
The VIIRS LAI data is available in the NetCDF format, The files adhere to a specific 
naming convention designed to convey essential information briefly: 
 
WKL-LAI-GLB_v1r0_n20_s202308290000000_e202309052359599_c202403211250073.nc 
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Product short name: ‘WKL-LAI-GLB’ 
Product version: v1r0 
Satellite ID: n20 (For NOAA-20, alternatively ‘npp’ or ‘n21’ for SNPP and NOAA-21) 
Start time stamp: _sYYYYMMDD0000000 (with fixed starting time 0000000) 
End time stamp: _eYYYYMMDD2359599 (with fixed ending time 2359599) 
Creation time stamp: _c YYYYMMDDHHMMSSS 
Data format: nc (NetCDF) 
 

  Performance Estimates 

The algorithm theoretical evaluation takes place during the machine learning model's 
training stage, where it is tested using a portion of the dataset (testing set) that is 
independent of the training set. This step validates the model's performance from a 
theoretical standpoint, ensuring that the evaluation accurately reflects the algorithm's 
capability to generalize to new, unseen data. Specifically, in the case of random forest 
regression, the result emerges as the average prediction across all trees within the forest. 
This averaging technique enhances accuracy beyond what any individual tree could 
achieve, bolstering the algorithm's likelihood of performing well on new data. 
 
In practice, the operational performance of the LAI data may be influenced by several 
factors beyond algorithmic uncertainty. These include the quality of the input data, which 
can be affected by variables such as solar and viewing geometry, atmospheric conditions, 
and the homogeneity of the surface. Additionally, the need to smooth or fill data due to 
missing values or outliers can further complicate the performance assessment. Post 
launch validation is for a deep understanding of product performance across all natural 
conditions, then supporting the refinement of algorithms and uncertainty estimation for 
users. 

2.5.1 in-situ LAI validation 

The primary in-situ validation ground datasets are provided by the Ground-Based 
Observations for Validation (GBOV) service, which were conducted at 19 distinct sites 
within the National Ecology Observatory Network (NEON) across the continental United 
States. The ground LAI were acquired using digital hemispherical photography (DHP), a 
technique involving the capture of both upward-facing and downward-facing photos in 
accordance with the NEON sampling protocol. This method effectively captures the 
canopy structure, aiding in accurate LAI assessment. The raw DHP datasets are then 
processed with great care before being made accessible via the GBOV service. 
 
It is important to note that the indirect measurement method primarily derives the Plant 
Area Index (PAI) as a surrogate for LAI during validation processes. PAI includes both 
leafy and woody elements within its measurements. Therefore, in forested areas where 
woody components are more prevalent, PAI estimates tend to be higher. To address this, 
a correction process is implemented to subtract the woody part from PAI, yielding a more 
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accurate representation of LAI. Additionally, adjustments are made to account for the 
clumping effect, which involves converting the effective PAI to a true PAI. 
 
Moreover, the in-situ reference measurements were upscaled using high-resolution (10-
30m) satellite data from sources such as Sentinel-2 and Landsat. This upscaling was 
essential to align these ground measurements with LAI products derived from satellites 
with moderate spatial resolution. Figure 8 demonstrates the upscaled LAI reference data, 
with the 30m Landsat reflectance data, high resolution LAI is retrieved using an ANN 
algorithm, then multiple temporal ground LAI are used for the LAI calibration then get the 
30m LAI reference map, for VIIRS validation, aggregation process is necessary to match 
the spatial resolution. 

 

Figure 8 - The ground LAI upscaling using the high-resolution LAI (Left: 30m Landsat LAI, Right: 

aggregated 300m LAI) as bridge 

More details about the ground measurement methodologies, the study by Meier et al. 
(2018) offers comprehensive insights into NEON's protocols. The processing techniques 
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and distribution strategies utilized by GBOV are extensively detailed in Brown et al. 
(2020). Further information is readily available on the GBOV website 
(https://gbov.acri.fr). 
 
For this version, the refresh rate will be 8 days, to keep the product date consistent over 
years, the first composing window of year will always start from January 1st, and the last 
compositing window (46th) from day of the year 361 will need the first three or two (for 
the leap year) days of next year to complete an 8-day window. In the future version, 
depending on the user request, a daily rolling weekly compositing scheme might be 
applied to improve the refresh rate. 
 
Preliminary validation of the LAI was performed using one year of ground data supplied 
by GBOV. Figure 9 showcases scatter plots comparing the ground-based LAI 
measurements with the VIIRS LAI product data. Additionally, the figure summarizes the 
validation statistics. A good correlation between the ground LAI and VIIRS LAI product 
was observed, demonstrating acceptable levels of accuracy and precision. However, 
there are still some grids with uncertainties exceeding the required thresholds. This 
suggests that both the LAI product and the validation process require further refinement. 
 

 

Figure 9 - The LAI product preliminary validation at NEON sites 

To enhance the robustness of the LAI product validation, data from other field campaigns 
will also be employed, supplementing the measurements from the NEON sites. This 
approach is taken to ensure the validation process is comprehensive and not biased by 

https://gbov.acri.fr/
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a limited dataset. However, it's important to acknowledge that some of the data from these 
campaigns were collected in previous years. Consequently, there is a need to reprocess 
the VIIRS Surface Reflectance data to generate LAI estimates that are consistent and 
suitable for validation purposes. 

2.5.2 Inter-comparison with existing products 

To evaluate the consistency between the newly developed LAI product and established 
LAI training products, we utilized sites from the Benchmark Land Multisite Analysis and 
Intercomparison of Products (BELMANIP) network, version 2.1, for site-scale 
comparisons. BELMANIP2, an evolution of the original network, integrates sites from 
renowned experimental networks—including FLUXNET, AERONET, VALERI, and 
BigFoot—augmented by strategically chosen locations from the GLC2000 land cover 
map. The expanded BELMANIP2 dataset now includes 445 diverse sites, carefully 
selected to reflect the vast array of global vegetation types and climatic conditions. This 
deliberate selection process ensures that, despite the dataset's size, it provides a solid 
and representative basis for conducting meaningful comparative analyses between the 
LAI products. Leveraging the carefully curated BELMANIP dataset allows for an effective 
and comprehensive assessment, ensuring a wide-ranging representation in the 
comparison of LAI products. 
 
As the primary dataset for training, the NASA VNP15 LAI product is utilized for inter-
comparison, with the expectation that the newly developed LAI will perform comparably 
to VNP15. This assumption is validated through cross-comparison, which, supported by 
high-quality data spanning an entire year, demonstrates good agreement between the 
two products, as illustrated in Figure 10. The figure also includes relevant statistical 
analysis. However, the new LAI product offers certain advantages over VNP15. During 
the preparation of the training data, two widely used products, GLASS and GEOv2, are 
integrated to filter out questionable data. The GLASS LAI, benefiting from time series 
information for offline processing, provides smooth data. Meanwhile, GEOv2, being an 
independent observation distinct from MODIS/VIIRS data, contributes to the fused LAI 
used for model training, enhancing its reliability. Additionally, the temporal smoothing 
process significantly reduces outliers. Although this process may introduce uncertainty in 
certain scenarios, it enhances data usability and overall quality for a global gap-free 
product. 
 
A similar inter-comparison will also be conducted for the GLASS and GEOv2 products 
alongside the new product. This process aims to identify the strengths of these existing 
products and incorporate them into the new LAI product. Additionally, it seeks to address 
any shortcomings they may have. This comparative analysis will facilitate a 
comprehensive understanding of how the new LAI product can leverage the advantages 
of the widely used products while striving to mitigate their limitations, ultimately leading to 
the development of a more refined and effective LAI product. 
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Figure 10 - Preliminary inter-comparison with VNP15 LAI at the BELMANIP2 sites 

The BELMANIP dataset can provide a general overview of the global performance of 
these LAI products. However, to conduct a more detailed analysis, it is necessary to 
examine the LAI distribution across different biome types specifically. 
 
Beyond absolute values, the temporal continuity and smoothness of the LAI are crucial 
metrics for evaluating the product's quality. To assess the temporal smoothness, a simple 
Temporal Discontinuity Index (TDI) will be employed. The TDI is defined as the mean of 
the absolute differences between all adjacent time steps in the LAI series, represented 
by the formula: 

𝑇𝐷𝐼 = ∑

𝑁𝑡−1

𝑡=1

|𝐿𝐴𝐼𝑡+1 − 𝐿𝐴𝐼𝑡| 

In this formula, Nt denotes the number of time steps for a given period, while LAIt and 
LAIt+1 are the LAI values at adjacent time points in the series. This index will provide a 
quantitative measure of how smoothly the LAI values transition over time, highlighting 
the effectiveness of temporal smoothing processes and the overall continuity of the 
product. 

2.5.3 LAI performance in Noah-MP model 

The Noah-MP LSM is an advanced land surface modeling framework that represents 
physical and biophysical exchanges between the atmosphere and land surface, including 
energy, water, and carbon fluxes. It is slated to be the next-generation LSM for numerical 
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weather forecasting. The Noah-MP LSM enhances the original Noah LSM by offering 
multiple parameterization options for key processes, with LAI playing a pivotal role in 
these simulations. 
 
Given Noah-MP will be the primary user, the LAI impact on the model is an import metric 
to evaluate its performance. The current LSM model taking prescribed LAI based on a 
monthly schedule for each of 28 biome types, the Noah-MP test will integrate LAI data 
progressively, Initially, global LAI monthly climatology will be incorporated into the model, 
followed by an assessment of its impact on model outputs. Should the inclusion of LAI 
data demonstrate a positive effect, a dynamic LAI dataset will then be introduced for 
further evaluation. 
 
To enhance model support, a deep understanding of vegetation physical mechanisms 
and parameterization schemes is essential for applying LAI, especially over 
heterogeneous surfaces where a single LAI value may not sufficiently capture vegetation 
dynamics. Efforts should be made to explore effective methods for integrating current LAI 
products into the model, thereby improving its accuracy and reliability. 
 
  ASSUMPTIONS AND LIMITATIONS  

  Performance Assumptions 

The LAI retrieval algorithm performance is dependent on observation conditions and the 
input data consistency and quality. 

● VIIRS surface reflectance in I1, I2 and I3 bands are available, calibrated and 
navigated and are quality assured.  

● The training datasets are consistent with the operational input data (surface 
reflectance, biome type) 

 
The final LAI is temporally smoothed, and gap filled, the following assumptions should be 
satisfied: 

● The assumption that LAI changes slowly and continuously from week to week, and 
within a week (8 days period) no dramatic LAI change. 

● The biome type is stable over time. 

  Potential Improvements 

For machine learning algorithms, product performance is closely tied to the quality and 
representativeness of the training data. As such, updates to the machine learning model 
are made with enhancements to the training dataset, driven by the evaluation and 
validation results from operational data. This iterative process ensures continuous 
improvement and relevance of the algorithm to its applications. 
 
In the context of near real-time LAI temporal smoothing, a significant challenge arises 
due to the availability of only prior information in the time series. This limitation becomes 
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particularly problematic during periods of rapid vegetation changes, where the absence 
of post-event data can introduce substantial uncertainty. While leveraging LAI climatology 
can mitigate this to some extent, it is recognized that future enhancements will likely 
involve more sophisticated time series analysis methods to address these challenges 
effectively. 
 
The LAI product is specifically tailored to support the Noah-MP LSM, recognizing the 
importance of this integration, potential future improvements or adjustments are 
anticipated to ensure the product's efficient compatibility and performance within the 
model framework. This forward-looking approach underscores the commitment to refining 
the LAI product in response to evolving model requirements and scientific advancements. 
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